Chapter 31 Distribution of Mass
Here Mass is a continous
variable and therfore for the distribution we plot a histogram
.
We plot the distribution of the Mass of the Meteorites.
MetLandings %>%
ggplot(aes(x = mass) )+
geom_histogram(fill = fillColor2) +
scale_x_log10() +
scale_y_log10() +
labs(x = 'Mass in gms' ,y = 'Count', title = paste("Distribution of", "mass")) +
theme_bw()
31.1 Heaviest Meteorite
The mass is in Kilograms.
MetHeaviest = max(MetLandings$mass,na.rm = TRUE)
MetHeviestRec = MetLandings %>%
filter(mass == MetHeaviest) %>%
mutate( mass = mass/1e3)
kable(MetHeviestRec,"html") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
scroll_box(width = "800px")
name | id | nametype | recclass | mass | fall | year | reclat | reclong | GeoLocation |
---|---|---|---|---|---|---|---|---|---|
Hoba | 11890 | Valid | Iron, IVB | 60000 | Found | 1920 | -19.58333 | 17.91667 | (-19.583330, 17.916670) |
31.2 Lightest Meteorite
The mass is in Kilograms.
MetLightest = min(MetLandings$mass,na.rm = TRUE)
MetLightestRec = MetLandings %>%
filter(mass == MetLightest) %>%
mutate( mass = mass/1e3)
kable(head(MetLightestRec,6),"html") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
scroll_box(width = "800px")
name | id | nametype | recclass | mass | fall | year | reclat | reclong | GeoLocation |
---|---|---|---|---|---|---|---|---|---|
Gove | 52859 | Relict | Relict iron | 0 | Found | 1979 | -12.26333 | 136.83833 | (-12.263330, 136.838330) |
Österplana 048 | 56147 | Relict | Relict OC | 0 | Found | 2004 | 58.58333 | 13.43333 | (58.583330, 13.433330) |
Österplana 049 | 56148 | Relict | Relict OC | 0 | Found | 2012 | 58.58333 | 13.43333 | (58.583330, 13.433330) |
Österplana 050 | 56149 | Relict | Relict OC | 0 | Found | 2003 | 58.58333 | 13.43333 | (58.583330, 13.433330) |
Österplana 051 | 56150 | Relict | Relict OC | 0 | Found | 2006 | 58.58333 | 13.43333 | (58.583330, 13.433330) |
Österplana 052 | 56151 | Relict | Relict OC | 0 | Found | 2006 | 58.58333 | 13.43333 | (58.583330, 13.433330) |
31.3 Valid Lightest Meteorite
The mass is in Kilograms.
MetLandingsValid = MetLandings %>%
filter(nametype == 'Valid')
MetLightest = min(MetLandingsValid$mass,na.rm = TRUE)
MetLightestRec = MetLandingsValid %>%
filter(mass == MetLightest) %>%
mutate( mass = mass/1e3)
kable(head(MetLightestRec,6),"html") %>%
kable_styling(bootstrap_options = c("striped", "hover", "condensed", "responsive")) %>%
scroll_box(width = "800px")
name | id | nametype | recclass | mass | fall | year | reclat | reclong | GeoLocation |
---|---|---|---|---|---|---|---|---|---|
Yamato 8333 | 29438 | Valid | H5 | 1e-05 | Found | 1983 | -71.5 | 35.66667 | (-71.500000, 35.666670) |
31.4 Distribution of Mass classified by Fall Type
31.4.1 Autoselect Fall Type Colors
We plot the distribution of the Mass of the Meteorites based on their Fall Type
MetLandings %>%
ggplot(aes(x = mass, fill = fall)) +
geom_histogram(alpha = 0.8) +
scale_x_log10() +
scale_y_log10() +
labs(x= 'Mass in gms',y = 'Count', title = paste("Distribution of", ' mass ')) +
theme_bw()
31.4.2 Select Fall Type Colors
We plot the distribution of the Mass of the Meteorites based on their Fall Type
. Here we manually select the colors
of the fall type.
MetLandings %>%
ggplot(aes(x = mass, fill = fall)) +
geom_histogram(alpha = 0.8) +
scale_x_log10() +
scale_y_log10() +
scale_fill_manual( values = c("red","blue") )+
labs(x= 'Mass in gms',y = 'Count', title = paste("Distribution of", ' mass ')) +
theme_bw()
31.5 Mass with plots for each fall Type
Here Mass is a continous
variable and Fall is a categorical
variable. To examine the relationships between a continous and categorical variable, we plot a facet
bar plot.
MetLandings %>%
ggplot(aes(x = mass, fill = fall)) +
geom_histogram(alpha = 0.8) +
scale_x_log10() +
scale_y_log10() +
scale_fill_manual( values = c("red","blue") ) +
facet_wrap(~fall) +
labs(x= 'Mass in gms',y = 'Count', title = paste("Distribution of", ' mass ')) +
theme_bw()
31.6 Mass with plots for each fall Type
Here Mass is a continous
variable and Fall is a categorical
variable. To examine the relationships between a continous and categorical variable, we plot a BoxPlot
plot.
In this case, we do a BoxPlot with the mass being transformed into Kilograms. The plot shows a number of outliers and the distribution of the mass for each fall type is not very clearly observed.
MetLandings %>%
mutate( fill = as.factor(fall)) %>%
ggplot(aes(x = fall, y= mass/1e3, fill = fall)) +
geom_boxplot() +
scale_fill_manual( values = c("red","blue") ) +
facet_wrap(~fall) +
labs(x= 'Fall Type',y = 'Mass in Kgs', title = paste("Distribution of", ' mass ')) +
theme_bw()
31.7 Mass with plots for each fall Type ( partially removing outliers)
We filter the mass of the meteorites having less than 30kgs and do a boxplot.
MetLandings %>%
mutate( fill = as.factor(fall)) %>%
filter( (mass/1e3) < 30) %>%
ggplot(aes(x = fall, y= mass/1e3, fill = fall)) +
geom_boxplot() +
scale_fill_manual( values = c("red","blue") ) +
facet_wrap(~fall) +
labs(x= 'Fall Type',y = 'Mass in Kgs', title = paste("Distribution of", ' mass ')) +
theme_bw()