Chapter 13 Recommended Notebooks for 2021 June to 2021 December
We recommend the following Notebooks created between 2021 June to 2021 December [ This is chosen to reduce the dataset analysis purposes only ]
We choose the following criteria
Medals - Silver
We chose a Kernel which is NOT a Competition Notebook
Performance Tier of the author is Expert or Master
We chose Kernels whose Total Votes greater than 40, Total Comments greater than 10 and the Number of views is more than 3100
We removed Kernels which had common data sources such as Titanic, Breast Cancer , Heart and Diabetes
$MadePublicDate = as.Date(kernels$MadePublicDate,format = "%m/%d/%Y")
kernels
= kernels %>%
kernels_subset filter(between(MadePublicDate, as.Date("2021-06-01"),as.Date("2021-12-31")))
= kernels_subset %>%
kernels_subset filter(TotalVotes > 40)
= kernels_subset %>%
kernels_subset filter(TotalComments > 10)
= kernels_subset %>%
kernels_subset filter(TotalViews > 3100)
$Medal = as.integer(kernels_subset$Medal)
kernels_subset
= kernels_subset %>%
kernels_subset_silver filter(Medal >= 2)
<- kernels_subset_silver %>%
kvcs_silver left_join(kernel_version_competition ,
by = c("CurrentKernelVersionId" = "KernelVersionId"))
= kvcs_silver %>%
kvcs_silver filter(is.na(SourceCompetitionId))
= kvcs_silver %>%
kvcs_silver mutate(CompNoteBook = ifelse(is.na(SourceCompetitionId),0,1))
= kvcs_silver %>%
kvcs_silver_users left_join(users %>% select(AuthorUserId = Id,
author_kaggle = UserName,
DisplayName,
RegisterDate,by = "AuthorUserId")
PerformanceTier),
= kvcs_silver_users %>%
kvcs_silver_users_experts filter(PerformanceTier %in% c(2,3))
= kvcs_silver_users_experts %>%
kvcs_silver_users_experts filter(!str_detect(CurrentUrlSlug, c("titanic") ))
= kvcs_silver_users_experts %>%
kvcs_silver_users_experts filter(!str_detect(CurrentUrlSlug, c("diabetes") ))
= kvcs_silver_users_experts %>%
kvcs_silver_users_experts filter(!str_detect(CurrentUrlSlug, c("house") ))
= kvcs_silver_users_experts %>%
kvcs_silver_users_experts filter(!str_detect(CurrentUrlSlug, c("heart") ))
= kvcs_silver_users_experts %>%
kvcs_silver_users_experts filter(!str_detect(CurrentUrlSlug, c("breast") ))
= kvcs_silver_users_experts %>%
kvcs_silver_users_experts mutate( URL = paste("https://www.kaggle.com/code/",author_kaggle,"/",CurrentUrlSlug,sep =""))
= kvcs_silver_users_experts %>%
kvcs_versions_info_reduced select("URL","Medal",
"TotalViews","TotalComments","TotalVotes",
%>%
) arrange(desc(TotalVotes))
%>%
kvcs_versions_info_reduced gt() %>%
tab_header(
title = "Recommended Notebooks for 2021 June to December")
Recommended Notebooks for 2021 June to December | ||||
---|---|---|---|---|
URL | Medal | TotalViews | TotalComments | TotalVotes |
https://www.kaggle.com/code/ankitkalauni/tokyo-olympic-2021-starter-clean-eda | 2 | 4747 | 48 | 96 |
https://www.kaggle.com/code/sonalisingh1411/eda-on-train-test-dataset-price-prediction | 2 | 4471 | 38 | 86 |
https://www.kaggle.com/code/imakash3011/customer-analysis-eda-report-clustering | 2 | 6530 | 46 | 77 |
https://www.kaggle.com/code/mysarahmadbhat/types-of-transformations-for-better-distribution | 2 | 3551 | 64 | 73 |
https://www.kaggle.com/code/miguelfzzz/store-customers-clustering-analysis | 2 | 4338 | 22 | 72 |
https://www.kaggle.com/code/imakash3011/covid-19-india-eda-visualization-report | 2 | 3414 | 60 | 71 |
https://www.kaggle.com/code/mysarahmadbhat/python-from-zero-to | 2 | 5180 | 36 | 71 |
https://www.kaggle.com/code/kaanboke/beginner-friendly-end-to-end-ml-project-enjoy | 2 | 3211 | 24 | 69 |
https://www.kaggle.com/code/jonaspalucibarbosa/chest-x-ray-pneumonia-cnn-transfer-learning | 2 | 5180 | 27 | 66 |
https://www.kaggle.com/code/kartik2khandelwal/bitcoin-crash-prediction | 2 | 3565 | 49 | 66 |
https://www.kaggle.com/code/miguelfzzz/olympics-tokyo-2020-cool-eda | 2 | 4085 | 39 | 65 |
https://www.kaggle.com/code/maricinnamon/store-sales-time-series-forecast-visualization | 2 | 4671 | 33 | 65 |
https://www.kaggle.com/code/kslarwtf/eda-clustering-updated | 2 | 4404 | 45 | 64 |
https://www.kaggle.com/code/miguelfzzz/bellabeat-data-analysis-discovering-trends | 2 | 3110 | 12 | 63 |
https://www.kaggle.com/code/ankitkalauni/covid-19-india-statewise-clean-eda-deaths-pred | 2 | 3308 | 49 | 62 |
https://www.kaggle.com/code/gaganmaahi224/eda-detailed-explanation-of-knn-algorithm | 2 | 3351 | 39 | 62 |
https://www.kaggle.com/code/yuyougnchan/look-at-this-note-numeric-variable-is-easy | 2 | 3662 | 42 | 60 |
https://www.kaggle.com/code/zwartfreak/easiest-price-prediction-full-explanation | 2 | 4773 | 36 | 59 |
https://www.kaggle.com/code/thomaskonstantin/exploring-and-predicting-drinking-water-potability | 2 | 4285 | 39 | 58 |
https://www.kaggle.com/code/victoriamiller19/hypothesis-testing-explanation | 2 | 3107 | 27 | 58 |
https://www.kaggle.com/code/vardhansiramdasu/summer-olympics-eda | 2 | 3364 | 41 | 58 |
https://www.kaggle.com/code/mostafaalaa123/customer-personality | 2 | 4615 | 22 | 57 |
https://www.kaggle.com/code/ludovicocuoghi/twitter-sentiment-analysis-with-bert-roberta | 2 | 3346 | 39 | 57 |
https://www.kaggle.com/code/aryantiwari123/hotel-booking-eda-models | 2 | 4616 | 56 | 56 |
https://www.kaggle.com/code/tensorchoko/g-research-crypto-forecasting-eda | 2 | 3979 | 18 | 56 |
https://www.kaggle.com/code/frankmollard/a-story-about-unsupervised-learning | 2 | 5311 | 14 | 53 |
https://www.kaggle.com/code/aditimulye/adult-income-dataset-from-scratch | 2 | 3215 | 25 | 52 |
https://www.kaggle.com/code/mostafaalaa123/finished-quick-analysis-of-each-q | 2 | 5383 | 38 | 51 |
https://www.kaggle.com/code/anandhuh/image-classification-using-cnn-for-beginners | 2 | 5234 | 24 | 50 |
https://www.kaggle.com/code/frankmollard/nlp-a-gentle-introduction-lstm-word2vec-bert | 2 | 3633 | 30 | 50 |
https://www.kaggle.com/code/ankitkalauni/customer-personality-clean-eda-k-means | 2 | 3348 | 25 | 50 |
https://www.kaggle.com/code/prena0808/tokyo-olympics-data-analysis | 3 | 3331 | 20 | 50 |
https://www.kaggle.com/code/paulrohan2020/ml-algorithms-from-scratch-with-pure-python | 2 | 3717 | 37 | 48 |
https://www.kaggle.com/code/rankirsh/predicting-attrition-from-a-to-z | 2 | 3895 | 33 | 47 |
https://www.kaggle.com/code/atasaygin/hotel-booking-demand-eda-and-of-guest-prediction | 2 | 3213 | 20 | 46 |
https://www.kaggle.com/code/hijest/text-generation-for-beginners-thorough-tutorial | 2 | 6054 | 11 | 45 |
https://www.kaggle.com/code/aryantiwari123/handwriting-recognition-deep-learning-tensorflow | 2 | 3349 | 32 | 44 |
https://www.kaggle.com/code/imakash3011/water-quality-prediction-7-model | 2 | 4013 | 45 | 43 |
https://www.kaggle.com/code/yogidsba/personal-loan-logistic-regression-decision-tree | 2 | 7634 | 24 | 42 |
https://www.kaggle.com/code/jonaspalucibarbosa/default-of-credit-card-eda-catboost-w-ft-eng | 2 | 3164 | 26 | 42 |
https://www.kaggle.com/code/anoopashware/food-demand-forecasting-predict-orders | 2 | 3642 | 14 | 41 |