Chapter 15 Victim Descent
We examine the Descent of the Victims in the barplot.
VictimDescentAbbr = c("A","B","C","D","F","G","H","I","J","K","L","O","P","S","U","V","W","X","Z")
VictimDescentDescription = c("Other Asian","Black",
"Chinese","Cambodian","Filipino",
"Guamanian","Hispanic/Latin/Mexican",
"American Indian/Alaskan Native",
"Japanese","Korean","Laotian ",
"Other","Pacific Islander",
"Samoan","Hawaiian","Vietnamese",
"White","Unknown","AsianIndian")
VictimDescentFull = data.frame(VictimDescent = as.character(VictimDescentAbbr),
VictimDescentDescription = as.character(VictimDescentDescription))
LACrime$VictimDescent = as.character(LACrime$VictimDescent)
LACrime %>%
filter(!is.na(VictimDescent)) %>%
group_by(VictimDescent) %>%
tally() %>%
ungroup() %>%
arrange(desc(n)) %>%
inner_join(VictimDescentFull) %>%
head(10) %>%
mutate(VictimDescentDescription = reorder(VictimDescentDescription,n)) %>%
ggplot(aes(x = VictimDescentDescription,y = n)) +
geom_bar(stat='identity',colour="white", fill =fillColor2) +
geom_text(aes(x = VictimDescentDescription, y = 1, label = paste0("(",n,")",sep="")),
hjust=0, vjust=.5, size = 4, colour = 'black',
fontface = 'bold') +
labs(x = 'VictimDescent', y = 'Count of Incidents',
title = 'Count of Incidents and VictimDescent') +
coord_flip() +
theme_bw()
We observe Hispanic, White and Black are the top categories where the Victims are present.